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INTRODUCTION 

This paper and corresponding presentation derives an 
inverse method to measure the complex flexural wavenumber 
and wave propagation coefficients of a beam.  The approach 
obtains seven measured transfer functions by vibrating the 
beam transversely with any set of corresponding boundary 
conditions.  These measurements are then combined to yield 
closed-form solutions of the beam parameters.  The test method 
is subjected to a Monte Carlo simulation, which shows that it is 
relatively immune to external noise in the data. 

SYSTEM MODEL AND INVERSE SOLUTION 
The system model of the transverse motion of the beam is 

the Bernoulli-Euler beam equation, written as 
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where x is the distance along the length of the beam, t is time, u 
is the displacement of the beam in the (transverse) y-direction, 
E is the (complex) Young’s modulus, I is the moment of inertia, 
ρ is the density, and Ab  is the cross-sectional area of the beam.  
Implicit in Eqn. (1) is the assumption that plane sections remain 
plane during bending (or transverse motion).  Additionally, 
Young’s modulus, the moment of inertia, the density, and the 
cross-sectional area remain constant along the entire length of 
the beam.  The displacement is modeled as a steady-state 
response in time and is expressed as 
 )iexp(),(),( txUtxu !!=  , (2) 
where ω is the frequency of excitation (rad/s), ),( !xU  is the 
temporal Fourier transform of the transverse displacement, and 
i is the square root of –1.  The temporal solution to Eqn. (1), 
derived using Eqn. (2) and written in terms of trigonometric 
functions, is 
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where A(ω), B(ω), C(ω), and D(ω) are response coefficients 
and α (ω) is the flexural wavenumber given by 
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For brevity, the ω dependence is omitted from the response 
coefficients and the flexural wavenumber throughout the 
remainder of the paper. 

Equation (3) has five unknowns and is nonlinear with 
respect to the unknown flexural wavenumber.  It will be shown 
that the use of seven independent, equally spaced 
measurements allows the five unknowns to be estimated with 
closed-form solutions.  To begin, all seven frequency-domain 
transfer functions of acceleration (or displacement) are 
measured at some location and are then divided by a common 
reference measurement.  Each of the seven transfer functions is 
collected by two accelerometers placed at different locations on 
the beam (although one may be placed at the base of the shaker 
table).  The seven measurements are set equal to the theoretical 
expression given in Eqn. (3).  Without loss of generality, the 
middle measurement location corresponds to x = 0 - a location 
that does not necessarily have to be placed at the middle of the 
beam.  The seven equations are written as 
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)2sinh()2cosh()2sin()2cos(2 !"!"!"!" DCBAT +++= (10) 
and 

)3sinh()3cosh()3sin()3cos(3 !"!"!"!" DCBAT +++= (11) 
where δ is the sensor-to-sensor separation distance. 

Combining Eqns. (5) through (11) now results in a 
binomial expression with respect to the cosine function, which 
is written as 

 0)cos()(cos2 =++ cba !"!"  , (12) 
where 
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and 
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Equation (12) is now solved using 
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The inversion of Eqn. (12) allows the complex-valued flexural 
wavenumber α to be solved as a function of φ at every 
frequency for which a measurement is made.  The solution to 
the real part of α is 
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where n is a non-negative integer, and the capital A denotes the 
principal value of the inverse cosine function.  The value of n is 
determined from the function s, which is a periodically varying 
cosine function with respect to frequency.  That is, while n is 0 
at zero frequency, it increases by 1 every time s cycles through 
π radians (180º).  It is noted here that increasing the integer n 
allows the estimation process to be used beyond the Nyquist 
spacing criteria of the sensors because n keeps a record of the 
number of aliasing cycles between the sensors and thus 
accounts for these cycles in the measurement process.  After the 
solution to the real part of α is found, the solution to the 
imaginary part of α is written as 
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Although normally considered less important than the 
estimate of the flexural wavenumber, the response coefficients 
are next determined.  The exact solutions are 
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and 
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NUMERICAL EXAMPLE 

The inverse method is examined with a numerical 
simulation that has noise added to the transfer functions.  In this 
configuration, the beam has both ends constrained to ground 
with translational springs.  The baseline problem has a 
rectangular cross section with the following physical properties:  

)i05.01(1011 +=E  2
N/m , ρ = 5000 3kg/m , 015.0=bA  2

m , 
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m , 4=L  m, 5.0=!  m, 8

1 10 =k  N/m , 

and 12
2 10 =k  N/m .  Figure 1 is a plot of the estimated and 

actual values of flexural wavenumber α versus frequency using 
an error value of e = 0.02.  The actual values (no noise) of the 
real part of α are shown as a solid line, and the estimated values 
(with noise) of the real part of α are depicted with square 
symbols.  The actual values of the imaginary part of α are 
shown as a solid line, and the estimated values of the imaginary 
part of α are depicted with circle symbols. 
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Figure 1.  Flexural Wavenumber Versus Frequency 

 
CONSLUSIONS 

The parameters of the beam can be estimated with an 
inverse method that utilizes seven equally spaced 
measurements.  Additionally, an experiment was conducted that 
verified this method. 
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